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Abstract
Research in holographic video technology has made great progress in the past decade, thanks 
to new advances in hologram computation algorithms and light modulation materials. Due to the 
niche and inaccessibility of holographic display research, however, literature on applications of 
holographic display technology remains scarce.

In this thesis, we describe a holographic display application that combines remote telepresence 
with interaction in 3D space. We propose some key concepts on leveraging the strengths of 
holographic display technology as a medium for interactive telepresence. These concepts are 
implemented in a real-time, end-to-end 3D telepresence software application titled “Holosuite.” 
Our implementation fosters a novel usage of sharing, collaborating with, and visualizing 3D data 
between users in a highly immersive and realistic way. In doing so, we have created an 
experience that connects two remote users in a way that is more engaging and provides more 
affordances than traditional videoconferencing.  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The young man stepped into the hall of mirrors
Where he discovered a reflection of himself

Even the greatest stars discover themselves in the looking glass

Sometimes he saw his real face
And sometimes a stranger at his place

Even the greatest stars find their face in the looking glass

He fell in love with the image of himself
And suddenly the picture was distorted

Even the greatest stars dislike themselves in the looking glass

He made up the person he wanted to be
And changed into a new personality

Even the greatest stars change themselves in the looking glass

The artist is living in the mirror
With the echoes of himself

Even the greatest stars live their lives in the looking glass
Even the greatest stars fix their face in the looking glass

Even the greatest stars live their lives in the looking glass

Lyrics from “Hall of Mirrors”, by Kraftwerk
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1. Introduction
Few scientific endeavors in the past century have managed to capture the public imagination 
quite like the field of holography.  It is a phenomenon that traces its roots to the research in 
microscopy and optics credited to Denis Gabor and Yuriy Denisyuk in the 1950’s and spans to 
the pioneering work done by Steve Benton at the MIT Media Lab on digital holographic imaging 
in the 1980’s and 1990’s.  To be more accurate, Gabor’s research in microscopy was 
considered turgid to his peers, and Denisyuk’s work of recording optical properties of an object 
on a shallow plate was largely derided and ignored.  It was not until the experiments of Emmet 
Leith and Juris Upatnieks in 1963, when the laser became available as a coherent light source, 
that the world would be introduced to a new astonishing form of three-dimensional imagery in 
which the reconstructed images exhibited depth and parallax with unprecedented realism [1].

The off-axis Leith-Upatnieks hologram method re-framed research in holography as a type of 
“advanced photography” field, which excited interest in domains far beyonds physics and 
engineering.  Leith and Upatnieks had succeeded in creating a transmission hologram, which 
could be described by the eloquent metaphor of a “window with a memory” [2].  It was the 
aesthetic properties of this discovery that captured the imagination of the public, exemplified by 
the “Princess Leia hologram” in the 1977 movie Star Wars. It was also in this tradition that Steve 
Benton’s research at the Media Lab carried the torch of holographic research, specifically with 
the creation of Mark I, the world’s first digital holographic display.

With the development of the Mark I and, subsequently, Mark II holovideo displays, Benton’s 
vision was to turn the “window with a memory” [2] into a living window—a medium that could be 
used as a real-time, high frame rate, dynamic display with the optical properties of the Leith-
Upatnieks transmission hologram that provided a realistic aesthetic [3]. This thesis is a 
continuation in the tradition set by Leith, Uptanieks, and Benton by exploring an application of 
holovideo—specifically we demonstrate real-time, two-way, interactive telepresence on a full-
color holovideo display based on new guided-wave acousto-optic modulator technology.

1.1 - The definition of “holographic” 

Much to the chagrin of holography researchers and artists, the term “hologram” has escaped the 
clutches of these communities who take pride in the craft and wonder of holography.  The usage 
of the words “hologram” and “holographic” has become diluted and these words are now used 
to describe a myriad of technologies and methods of display that have little to do with the 
original intent of the word.  The point of contention here lies not with the obsession for 
semantics, but that these display technologies usually cannot capture the richness of the 
promise of real holography.  Rather, they arguably serve to undermine the efforts of holographic 
research by painting the technology as being underwhelming, or bogus, even.

Holographic displays can be described as a technology that perform reconstruction of light 
wavefronts by using the diffraction of coherent light sources.  In lay terms, this means that in a 
holographic display, we are computing the way light interferes with itself to represent the  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amplitude and phase of incident light on a scene.  This distinction is crucial because while most 
other methods for displaying 3D imagery typically are concerned with tricking the human visual 
system into seeing depth and parallax, the holographic method aims to reconstruct the 
properties of the light signal of a scene that encode these visual cues.  Thus, when the 
holographic theory of wavefront reconstruction is applied, the light wavefronts striking the eye of 
the user should be theoretically indistinguishable from that of the original scenery.

In this paper, when any terms derivative of “hologram” are used, they are used in the strictest 
sense—that we are describing the phenomenon of recording, computing, or replaying the 
wavefront of scenery via diffraction of coherent light.  More specifically, when we use the term 
“digital holographic display” or “holovideo”, we are referring to a machine that can compute the 
interference pattern from a 3D scene (either captured digitally from the real world, rendered 
synthetically on a computer, or a combination of the two) and display the wavefront via 
diffraction of coherent light in real-time.

1.2 - Holography simulation 

It’s important to note, however, that in this 
thesis, we explore not only the practical 
application, but also the theory of holography 
as a medium for interactive telepresence.  
Since we are aiming to explore the practical 
and theoretical aspects of holographic 
telepresence together, some of the work can 
be performed adequately in a theoretical 
sense with what we refer to as a holographic 
display “simulation”.  Thus, whenever the 
term “simulation” is used from hereon in 
conjunction with holographic displays, it is 
used to describe the approach of using more 
conventional 3D displays that use 
stereoscopic vision and motion parallax 
reprojection—generating an approximation of 
two very powerful visual cues provided 
inherently in holographic images.

This is done for practical reasons, as the MIT 
Mark II and Mark IV, for example, are not full-
parallax displays—they only provide parallax 
effect in the horizontal dimension—and the size of Mark II/IV displays and its physical layout on 
an optical bench do not provide conditions for executing proper user studies.

The approach in this body of work is to implement all aspects of the telepresence software 
independent of rendering engine (networking, compression, hand tracking, etc.), while creating 
a simulation renderer made for advanced 3D pixel displays, in addition to a renderer for MIT 
Mark II and Mark IV holographic video displays.  In this architecture, the display method can be 
easily switched in software to accommodate the display type connected to the computer running 
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Holosuite, while the experience is consistently across displays.  This is described further in the 
architecture diagrams in the Development and Design chapters.

1.3 - The definition of telepresence 

The definition of telepresence is also a point of contention among academics as it has been 
used to describe a variety of technologies that allow people to communicate across long 
distances.  For some, telepresence describes the physical manifestation of presence, where 
physical materials are used to represent presence.  For others, the definition can mean 
something more visual, like video-conferencing.

In Holosuite, we aim to most accurately simulate the visual experience of the presence from 
someone who is far away.  As we are simulating the experience with high realism (depth and 
parallax), along with audio and hand interactions to manipulate models in a shared space, we 
contend that this satisfies even the strictest definition of “telepresence.”  As described in the 
Results section of this thesis, people who have used Holosuite rate it very highly in immersion 
and realism, so we take this as adequate proof of our assertion that we are properly using the 
term “telepresence” when describing the Holosuite user experience.

1.4 - What is Holosuite? 

The resulting work of this thesis is a software project titled “Holosuite.” Coded in C++11, 
Holosuite is an optimized, multi-threaded implementation of end-to-end 3D telepresence 
operating on two remote PCs via internet. It can render visual output to holographic displays, as 
well as advanced 3D displays with motion parallax reprojection.

There is a temptation to label Holosuite as “3D Skype” or “3D Videoconferencing”, but this fails 
to distinguish what is important about Holosuite, as it neglects the collaborative and interactive 
aspects of Holosuite.

The Holosuite software project merges two 3D worlds seamlessly, so as to simulate the usage 
where two distant people are merely separated by a metaphorical window.  Seamless merging 
of two 3D environments means that the users are able to share 3D models and data between 
each others’ worlds as if they were both present in the real world, with the virtual 3D models 
positioned between the users.

Imagine, for example, two people sitting on opposite sides of a table, with a model placed in the 
middle of the table.  In this scenario, both users can see and talk about the model together; they 
can also pick up the model, look underneath the model, rotate it and point to parts of the model.  
They may also be able to build the model together, by placing material on the model, or 
removing material, while picking up visual cues from the opposite user’s body language.  The 
Holosuite software project aims to implement this type of experience for two people who are 
physically separated by a large distance, whilst taking advantage of the visual aesthetic afforded 
by holographic or advanced 3D displays.
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FIG 1.4 - Holosuite implements the usage where two remote users can interact with each other 
and share 3D data in a unified space.  Using holographic and advanced 3D displays to render 
depth and parallax with high realism.



2. Background and Motivation
The lack of research in digital holographic display applications can be attributed to the following 
reasons:

First, the technical requirements for computing fringe patterns from 3D data with high frame 
rates are steep—a problem solved by advancements in modern multi-core CPUs, and many-
core GPUs.  GPUs were previously locked into fixed pipeline systems, and it was only in the 
past decade that hardware vendors unlocked them for general purpose computation [4].  Since 
CGH (computer-generated holography) algorithms are highly parallelizable, we can take 
advantage of GPU compute power to reconstruct wavefronts in real time.

Second, previous methods of controlling diffraction of light via a digital signal involved the use of 
bulk-wave acousto-optic modulators and LCOS technology, which provide much smaller space 
bandwidth product in comparison to newer guided-wave acousto-optic modulators [5]. This 
advancement allows for larger screen sizes, wider viewing angles and full-color digital 
holographic displays.  Combined with newer, more efficient fringe computation algorithms it 
gives us the ability to produce a light field which is very compelling to the human visual system 
[6].

Third, it is only from recent advances in camera capture technology that we are now able to 
easily capture 3D data from the real world in real time.  This is a boon for researching the 
applications of holography, because 3D data of the real world opens up a myriad of possibilities 
in visualization and interaction, of which a holographic display can take full advantage.  After all, 
if there is no 3D data of the real world, the benefit of using holovideo as a medium for 
telepresence becomes dubious.  To visualize the real world without 3D data, we have to resort 
to gimmicks that involve large camera rigs, creating challenging computation and bandwidth 
problems unsuited for common usage.

Finally, the last technological milestone has to do with the field of human-computer interaction. 
Recent advancements in computer vision algorithms and camera technology enable us to track 
a fully-articulated hand skeleton in 3D space in real-time.  The availability of robust 3D hand-
tracking technology enables us to integrate real-world hand usage metaphors with telepresence 
interactivity, which is essential for playing with objects in a virtual 3D space.

2.1 - Why holography? 

Holosuite is a project that, perhaps opportunistically, aims to take advantage of these recent 
advancements in technology to implement and prove beyond concept an interactive holographic 
telepresence application.  It is the realization of an idea that has its roots in the fiction and the 
science surrounding the field of holography.  Although interest in holography has waned since 
the days of Steve Benton, there still exists something in the zeitgeist which permeates the 
collective imagination—the idea of interacting across long distances with others in a realistic 
and immersive way that is compelling.
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Although the aim for this thesis is to research the applications of digital holographic video 
displays, we are also interested in developing an application that fosters real-world interaction 
and provides an engaging experience.  After all, the promise of holography is that we can create 
a visual experience that rivals that of the real world experience. In this capacity, we’ve 
established some guiding principles on how to best make use of the affordances of holographic 
display technology to develop interactive 3D telepresence.

2.2 - Holovideo as an ideal medium for interactive telepresence 

Although we have mentioned that the technical hurdles for implementing interactive holographic 
telepresence have been largely resolved, the question of the value of using holovideo as a 
medium for interactive telepresence remains unaddressed.

Establishing the feeling of presence of a remote user means that we should be able to see the 
true 3D image of the person, from all angles, as he or she looks in real life.  Holography gives 
us a theoretical framework and method by which we can accomplish this.  If we are to imagine 
the ideal hologram as a “window with memory” of the scenery behind it, our visual system would 
not be able to tell the difference between a real window facing the outside world and a hologram 
substitute [2].  In a theoretical sense, it would mean that reconstructing a wavefront is our best 
bet at creating the visual representation of a remote user.

Aside from the visual experience, how about interaction?  Why should interactivity be any better 
on a holographic display versus a traditional 2D, or digital 3D display, even?

In the literature for collaborative telepresence, we uncover a more subtle, yet meaningful 
window metaphor.  We imagine two users looking at each other, separated by a window.  When 
the user looks through the window, to the other side, he can see a 3D objects and users, just as 
he or she does in real life.  He or she can look around the objects and experience smooth 
motion parallax.  In this scenario, users can pass objects through the window to the other side, 
giving the remote user ownership and allowing them to analyze and manipulate the object.

In this imagined scenario, the two users may be only a few feet apart.  The power of using 
holovideo for telepresence is that we can create an experience from this imagined scenario for 
two people separated across long distances.  We can seamlessly merge two distant 3D worlds 
together as one. In the Related Works chapter, we describe the inspiration for this and what it 
means to create a “seamless” interactive telepresence experience.  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3. Related Works
The body of work in this thesis sits somewhere at the intersection of advanced display 
technology applications and classical human-computer interaction research (specifically in the 
domains of telepresence and computer-supported cooperative work).  The most relevant bodies 
of work come from Prof. Henry Fuchs, at the University of North Carolina Chapel Hill.  His group 
studies advanced computer graphics technology and telepresence methods related to 3D 
display technology.  Hiroshi Ishii’s Tangible Media Group at the MIT Media Lab, which is now 
more chiefly concerned with telepresence in the 3D physical medium space, has been exploring 
compelling interactive telepresence applications using shape displays. Although, the most 
relevant research to this project by Ishii is rooted in work done in the ‘90s at NTT Japan [7].  
Finally, the University of Arizona has been, to our knowledge, the only group to demonstrate a 
telepresence application that meets our strict definition of what can be considered holographic 
[8].

Although there are many other examples of similar projects across academia, we have 
narrowed the most important bodies of work belonging to the four most relevant topics: 
holographic display applications, end-to-end 3D telepresence, seamless collaboration, and 
interactive telepresence.

3.1 - Holographic display applications 

In 2010, Blanche et. al from the University of Arizona published a paper in Nature magazine 
titled, “Holographic three-dimensional telepresence using large-area photorefractive 
polymer” [8].  This is largely thought to be the first example of true holographic telepresence 
achieved, though with some major caveats.

�15

FIG 3.1.1 - An example of Blanche et. al’s technique of using large-area photo 
refractive polymer programmed by 50 Hz nanosecond pulsed laser.



Firstly, this method is not suitable for interactive telepresence as the frame rate is not within the 
realm of what can be considered real-time (the photopolymer programming method can update 
at most once every 2 seconds).  This not only makes impossible to have meaningful interaction, 
but as it does not approach tolerable real-time animation frame rate, it is not feasible for simple 
real-time communication either.

In addition to the display issues, Blanche et. al’s capture approach is done via a sophisticated 
16-camera array to generate a panorama for viewing motion parallax. This approach has 
limitations in that what is displayed to the viewer through the holographic pixels is a set of 16 
discrete views of the scene, which are not enough to produce the viewing effect of smooth 
motion parallax (rather the views transition visibly with the viewer motion).  It’s important to note, 
also, that this method is monochrome with no foreseeable way to create full-color images.

In 2011, J. Barabas, S. Jolly, D.E. Smalley 
and V.M. Bove Jr. demonstrated a diffraction-
specific method for displaying real-world 
scenes in real-time on a holographic display 
at the MIT Media Lab on the MIT Mark II 
display [9].  Compared to the prior example, 
this method was fast (17 frames per second) 
and utilized a hologram computation 
algorithm that discretized the display into 
computationally-independent chunks, each 
chunk being able to display variable light 
intensity and curvature as a function of 
viewing direction.

This allowed for a better approximation of 
ideal wavefronts, providing proper vergence 
and accommodation cues, resulting in a 
smooth, continuous motion parallax 

experience from the left-to-right viewing angles.  The MIT Mark II and Mark IV operate via 
acousto-optic diffraction of coherent light, which has speed limitations dictated by the speed of 
sound (more than enough for real-time frame rate display) and the ability to modulate light from 
multiple color channels simultaneously, enabling full color display on the Mark IV.

In addition to the advantages in computation algorithms, the capture method in the diffraction-
specific approach is to take data from the real world using depth-sensing cameras, such as the 
Microsoft Kinect.  Instead of generating discrete views from a camera array, this method 
employs the technique of computing the fringe pattern directly from the point cloud, or the 3D 
data set of the user as provided by the depth camera.  The most obvious benefit of this is that 
now only 1-3 camera(s) need to be used for capture (depending on the viewer’s tolerance for 
occlusion artifacts), making it more easily accessible as a human interface application, while 
providing accurate 3D location per voxel in the point cloud.  Another, perhaps less obvious 
advantage, is that depth data is much more compact and easier to compress than 16 discrete 
color images, allowing for real-time compression and transfer over internet connections (a key 
requirement for implementing the Holosuite user experience).
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FIG 3.1.2 - Holographic diffraction-specific 
image of a person pointing with his hand [9].



Holosuite improves upon this technique by implementing capture, compression, networking and 
rendering of 3D data on holographic displays for two distant users via internet, using a newer 
full-color hologram computation algorithm developed for the Mark IV display.

3.2 - End-to-end 3D telepresence 

At the University of North Carolina at Chapel 
Hill, work on 3D telepresence began in the 
1990s.  Towels et. al [10] in a paper titled, 
“3D tele-collaboration over Internet2” from 
1998 proposed a system very similar to 
Holosuite which enables end-to-end 3D 
telepresence with an interactive model 
shared between the two users.

As commodity depth cameras were not 
available at the time, this technique 
employed the usage of camera arrays and a 
pointing device to control and manipulate the 
3D object.  The image was displayed via a 
head-tracked stereoscopic display.  
Interestingly, they did employ 3D 
reconstruction to generate a point cloud of 
the user and transmit it over the internet in 
near real-time from multiple camera arrays on 1990s PC hardware, which was an impressive 
feat (2-3 fps).  This technique generated 75 Mbps of network traffic one way, which is not 
suitable for even today’s typical home broadband connections.

This implementation was very forward-thinking, in that it combined two 3D worlds with a shared 
virtual model between the users.  Holosuite improves upon this work by implementing the 

experience on commodity hardware and 
electronics, capable of operating in real time 
over home broadband connections.

A more modern example of the work done at 
the BeingThere International Research 
Centre for Tele-Presence and Tele-
Collaboration at UNC Chapel Hill is the 
Maimone and Fuchs 2011 ISMAR paper 
titled, “Enhanced Personal Autostereoscopic 
Telepresence System using Commodity 
Depth Cameras” [11] wherein end-to-end 3D 
teleconferencing system is implemented by 
multiple Microsoft Kinects at each end with 
3D reconstruction of the full scene 
transmitted across a network connection from 
local to remote user.
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FIG 3.2.1 - End-to-end 3D telepresence in 1998 
showing two users manipulating a 3d model 
with a pointing device [10].

FIG 3.2.2 - Maimone and Fuchs show two 
distant users combined in a single 3D scene 
[11].



Maimone and Fuchs’s research focuses mainly on the signal processing problems surrounding 
depth sensor data and layout of multiple Kinect cameras for better dealing with problems such 
as occlusion and incomplete/noisy sensor data.  The main contribution here is that from the 
point cloud, they are (in real time) rectifying multiple cameras pointed at the same scene, and 
constructing a mesh from the combined 3D point cloud data from these multiple sources.

Although Maimone does predict that one of the applications is “mixed reality collaboration”, 
where he shows a screenshot of a virtual 3D object in the 3D scene, there is no research done 
on this topic, nor is there an implementation of such a scenario.  Interestingly, on the project 
page there is an FAQ question titled, “Why does a teleconferencing system need to be in 3D 
and allow the user to look around the remote scene? Is this just a gimmick?”, for which 
Maimone writes the following response:

The value of these features is two-fold. First, they increase the sense of "presence" or 
"being there", the feeling that one is actually co-located with the remote user and his or 
her environment. This sense helps the user forget he or she is looking at a display 
screen and communicate naturally as if talking to someone on the other side of a table. 
Second, the ability to "look around" the scene helps preserve information that is lost 
during normal 2D video conferencing. For example, imagine that you are seated in a 
meeting room and someone's head is blocking your view of a whiteboard. In our system, 
as in real life, you would naturally move your head around for an unobstructed view. In 
traditional video conferencing, you must interrupt the meeting and ask that the remote 
user move his or her head. As another example, imagine an engineer is holding up a 
new prototype part to show to a remote participant. With our system, the remote 
participant could simply move his or her head around to inspect the part. With traditional 
2D video conferencing, the remote participant must communicate back and forth with the 
engineer regarding the different angles the part should be held until it is fully inspected.1

Maimone argues the benefits of having motion parallax for collaboration, especially for mixed 
reality modes where two users are viewing the same model, being able to look around the 
scenery does indeed increase the feeling of presence while simultaneously giving the user 
ability to better and more naturally inspect the virtual 3D model.  These assertions are backed 
by data gathered in user studies, discussed further in the Evaluation section of this document.

3.3 - Seamless collaboration 

Perhaps one of the most important bodies of work done in telepresence collaboration is the 
1992 project, ClearBoard, documented in the proceedings of the SIGCHI conference by Ishii et. 
al [7].  ClearBoard introduced a new concept of tele-collaboration to the digital world and 
realized a “seamless shared drawing space and eye contact to support realtime and remote 
collaboration by two users” [7].

ClearBoard’s major achievement was to transpose a traditional human activity for collaboration 
(two people writing on a whiteboard together) to a visual format suitable for digital display 

 http://www.cs.unc.edu/~maimone/KinectPaper/kinect.html1
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technology.  It succeeded in abstracting the problem of human collaboration in a way that was 
not only conducive to a digital/networked display setup, but actually augmented and enhanced 
the experience of the traditional side-by-side method of collaboration.  This was done by treating 
the computer’s digital display as a metaphorical “window”— a transparent, interactive surface 
separating two distantly located users.

Although seemingly trivial, the window metaphor was a very creative solution for adapting 
traditional collaborative interactions to a digital setting. Before this seamless space concept, 
collaborative applications on digital displays were laid out in a side-by-side tiled format, where 
each user was given a square alongside a shared space.  This setup was the most obvious, but 
did not allow for an engaging or effective way to collaborate, as the users could not tell where 
each other were looking, not to mention that it was not an optimal usage of the display space.

ClearBoard was not designed for 3D interaction, 
nor 3D visualization. Yet, the seamless user 
interface design from ClearBoard remains an 
inspiration for Holosuite since this arrangement 
very effectively provides a realistic interaction 
method even in 3D.  In Holosuite, we can 
extend this window metaphor into 3D space 
very easily—by merging two 3D worlds 
seamlessly, where the users are separated by 
the holovideo display.  The window metaphor is 
also helpful for describing the advantages of 
holographic display technology, as we can 
create the feeling of presence through motion 
parallax—a natural byproduct of what it feels 
like to see another person through a window.
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FIG 3.3.1 - The figure from the ClearBoard paper explaining what a “seamless space” is. Drawing 
C shows the advantage of the “window” metaphor, and is a usage of digital display to enhance 
the traditional experience, Drawing A.

FIG 3.3.2 - The ClearBoard seamless layout, 
showing two remote users collaborating on 
a single display space.



3.4 - Interactive telepresence 

At the MIT Media Lab, Hirosh Ishii’s Tangible Media 
Group is now researching shape display technology, 
with a primary application focus on interactive 
telepresence.  The inFORM physical telepresence 
project [12] embodies a system of collaboration where 
remotely connected users can control objects at the 
other end-location by utilizing a shape-changing display 
(both as a system to visualize three-dimensional data, 
and also to generate hand control as a type of tele-
robotic interface).

One of the great benefits of this technology is the ability 
to control real-world objects remotely, which is not 
within the realm of possibility for holographic 
telepresence applications.  While this usage is 
compelling, holographic display technology is more 
concerned with reconstructing a wavefront—having the 
ability to reproduce the light of a scene in a way that is 
indistinguishable from the real-world experience.

With shape display technology, such as inFORM, there 
are two problems that need to be addressed before 
visualization of 3D data can match that of light-based 
displays:  first, the fundamental element of the shape 
display must be reduced in size by a few orders of 
magnitude in order to match the visual aesthetic of light 
displays. Arguably, even for the usability of usages envisioned by by Folmer et. al (such as 
pointing, for example), require the granularity of light-based displays.  This limitation is not just 
an engineering task, but it is an research problem that deals with finding an actuating 
mechanism and system that operates on the scale of pixel display technology.

Secondly, and more importantly, such pin-based shape displays operate on a 2.5D axis, on 
which there is only freedom for pins to move up and down in the Z dimension.  This falls 
somewhat short of the theoretical ideal of interfaces based on “radical atoms” theory.  The ideal 
display built on radical atoms theory would call for a material to be deformable and controllable 
dynamically in all 3 dimensions to form any arbitrary shape.  With the 2.5D limitation, we are 
limited to convex shapes, or shapes that do not taper at the bottom. 

The theory of holographic imaging tells us that there is a phenomenon (diffraction) by which you 
can store all the information of light from a real-world scene, and replay that information later to 
faithfully re-create a 3D scene.  This theory is well understood, and we are now capable of 
controlling this phenomenon in a digital sense.  For radical atoms, there remains the challenge 
of finding a material that can practically match the theory, which puts a limitation on what shape 
displays and other displays based on radical atoms are capable of doing for the foreseeable 
future. 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FIG 3.4 - Shape display tele-robotic 
application, remote user controls a 
local object.



4. Design
There are two aspects to the design of Holosuite that are important to this document: the first is 
the human-computer interface model (or the user interface) and the second is the software-
hardware architecture required for implementing interactive end-to-end 3D telepresence in real 
time.

The user interface of the project is heavily inspired by the aforementioned related works, 
specifically borrowing from the tele-collaboration examples of 3D model manipulation and 
sharing between two users, while maintaining the seamless layout model.  The seamless layout 
model is useful for both the purpose of maintaining realism and immersion, and because it gives 
the advantage of being able to see the users’ actions and expressions as related to their 
activities with the 3D model.

4.1 - User interface design considerations 

Although it seems fairly obvious to use the seamless layout model for the end-to-end 3D 
telepresence user interface, some due diligence was done on other layouts to build confidence 
that the seamless method make sense from the user’s perspective.  After all, there may yet be 
some advantages to using a tiled visual layout with seams, where the objects and users are 
allotted their own spaces on the display.

In order to create an immersive and realistic user experience that takes advantage of 
holographic display technology we must also provide a natural interaction method for sharing 
and manipulating virtual 3D data (3D models) between users in a meaningful way.  From these 
goals, we have created a set of criteria that the user interface paradigm must fulfill.

4.2 - Immersion and realism 

What provides for an immersive and realistic experience? To create an experience for a local 
user to feel that the remote user is present, we first ask questions about the basic philosophy of 
perception.  Philosophies of perception can be broken down into internalist and externalist 
arguments, which hold that perception is either completely within the mind and nervous system, 
or that it is a result of the mind and external, real-world phenomenon independent of the 
observer, respectively.

Holography researchers would typically argue from the externalist philosophies of sensing, 
holding that a realistic experience follows when recreating the conditions of the way light 
behaves in the real world.  Therefore the primary concern in holographic imaging is to recreate 
the properties of light, not to “trick” the user into perceiving that a 3D object is there.  It is to 
actually reconstruct the light that would be produced when the object is in the presence of a 
viewer.  The externalist argument implies that the requirements for realism and immersion can 
be fulfilled by a holographic image, since any sensor—whether a human observer or machine— 
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theoretically cannot perceive the difference between a well-made hologram of a real-world 
scene and the actual scene itself.

However, if the externalist argument fails to convince the reader, we can also argue from a more 
internalist philosophy by analyzing the human visual system to better understand how humans 
perceive the 3D world in the mind.  This approach can also serve to highlight why holography is 
an ideal medium for telepresence, speaking in purely visual terms.

Depth perception is the result of a confluence of visual cues that, when processed 
simultaneously in the brain, result in the understanding of distance of objects and perception of 
the 3D world.  These cues can be categorized into two basic forms: monocular and binocular 
cues.  Monocular cues are the 2D representation of visual information, which can be seen with 
one eye, while binocular cues are the 3D counterpart that is seen by two eyes.  The scope of 
this thesis does not cover this topic in depth, but a great resource for better understanding depth 
perception can be found in Chapter 3 of the book Three Dimensional Imaging Techniques by 
Takanori Okoshi, titled “Physiology and Psychology of Depth Perception” [13].

When analyzing the most important of visual cues for depth perception, the argument in favor of 
using holographic video for immersion and realism becomes more compelling.  As seen in 
TABLE 4.2.1 and TABLE 4.2.2, holographic video displays are able to accurately provide all of 
the visual cues important for depth perception, without the necessity to simulate any cues in 
software, or wearing of glasses.  This would imply that applications built on this technology 
should inherently be more realistic and immersive than those built on traditional displays.  This 
is the true power of what it means to “reconstruct a wavefront” and why we contend that (when 
speaking in a visual sense) the aesthetic of holovideo is an ideal choice of medium for real-time 
telepresence. 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TABLE 4.2.1 - Monocular cues that can be provided by display technologies, ø denotes 
that software assistance/rendering can be used simulate the cues.

Monocular Cue 2D Display Digital 3D Display Holovideo Display

Occlusion ø ø √

Parallax ø ø √

Accommodation 
(Focus)

√

TABLE 4.2.2 - Binocular cues that can be provided by different display technologies.

Binocular Cue 2D Display Digital 3D Display Holovideo Display

Stereopsis 
(Disparity)

√ √

Convergence √



4.3 - User interface: interaction model 

The second goal of defining a meaningful interaction model can be intuited from the way people 
behave naturally with 3D objects in their presence.  To generate a viable interaction model, we 
first imagine a scenario in which two people standing across from each other are looking at a 
model together.  In such a scenario, the two people are free to grab, rotate and look around the 
model to get a better vantage point of features and different viewpoints of the 3D model.

In this scenario, we imagine that the two people are an architect and a client, for example.  The 
architect would like to get feedback from the client on the latest model revision, and the client 
would like to show the architect things about the current revision that he or she likes, or areas 

�23

FIG 4.3 - Two distant 3D worlds are merged seamlessly, to create the effect of unified 3D space 
wherein users can see each other in realistic and visualize a shared 3D model in realistic a 3D 
projection.



that need improvement.  To fulfill such an experience, we require that two usages should be 
implemented as they are done in the real world.  These are: the ability to be aware of where the 
remote user is looking and where the remote user is pointing. This body language is necessary 
for getting visual feedback on the remote user’s intent.

Further, users must be able to manipulate and share 3D objects with their hands, as they do in 
the real world.  Although there are pointing devices in existence that allow users to manipulate 
and point to objects in 3D space, we preferred to use a more natural interaction method.  
Allowing users to use a pinch-to-grasp metaphor for grabbing and rotating a virtual object feels 
more natural and intuitive for this specific type of activity.

4.4 - User interface: visual layout 

The visual layout should be one that can help to fulfill the design criteria of implementing the 
pinch-to-grasp metaphor of virtual model manipulation, whilst taking full advantage of the depth 
and parallax afforded by holovideo displays.  As such, there are three obvious methods 
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FIG 4.4.1 - An example of a tiled layout, which shows 3 three-dimensional views to the user. The 
small tiles on the right show the local and remote user.  The large tile on the left shows the same 
perspective view of the shared 3D model to both users.  The seams separating the tiles, 
however, hinder the feeling of immersion, and break the metaphor of two people standing 
across from each other with a model between them.



considered for building the Holosuite user experience: tiled layout, traditional video-conferencing 
mode, and seamless layout.

In the tiled layout (see FIG 4.4.1), the user sees him or herself and the other user as distinct 
entities, separated by seams, with the 3D model space as a big tile shared between two people.  
One of the advantages of this mode is that both users can see the same perspective (same 
side) of the shared virtual 3D model.  However, without some additional interaction methods, in 
this layout it is not possible to see what the remote user is looking at and which part of the 
model the remote user is pointing to.  Furthermore, the seams take away from the immersive 
experience, or the “feeling of being there”, as seams separate the local user from a remote user 
in a way that is not natural or cohesive visually.  Therefore this mode was not considered as a 
viable option.
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FIG 4.4.2 - Local user and remote user are separated by the display plane, with the 3D model 
having the ability to cross the display plane.  In this representation, there is no visual feedback 
of local user’s image.



By moving to a seamless design (FIG 4.4.2), we give up the feature of both users being able to 
look at the same viewpoint of the 3D model.  The seamless visual layout is a better allegory to 
the imagined scenario where two people are standing across from each other with a 3D model 
in the middle, because the display can act as a metaphorical window separating the two users’ 
worlds.  In this layout, the 3D model’s position and orientation must obey a euclidian 3D 
rendering, whereby the users see the opposite 180 degree view of the model, or we run the risk 
of the metaphor falling apart.  This allows for the users to understand, as in the real world, at 
which part of the model the opposite user is looking and pointing.  When we lose the ability to 
gauge a person’s gaze and body language, it negatively impacts the realism of the experience.

Hence, the question we focus on with regards to the visual layout is not so much about the 
decision between seams vs. seamless design—we have provided good arguments and prior 
work in the Background and Motivation chapter that make us confident in choosing the 
seamless design.  However, in the seamless design there remains a question about whether 
there is still benefit in seeing oneself (as in traditional videoconferencing layouts) for visual 
feedback.

Visual feedback of oneself (FIG 4.4.3), often implemented in traditional videoconferencing 
layouts as a box in the corner with an image of the local user’s reflection, could be useful for 
numerous reasons. Perhaps the most important reason is that the local user is unsure whether 
he or she is within the field of view of the camera.  This visual feedback is critical for 
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FIG 4.4.3 - Local user and remote user are separated by a plane, with 3d model having the ability 
to cross the plane.  In this representation, there is visual feedback of local user’s image.



understanding what the remote user is seeing during the videoconferencing and helps to build 
confidence that there is proper engagement from the remote user.

Second, the local user may wish to show something, a 3D model for example, to the remote 
user.  Without proper visual feedback, the local user may not know which viewpoint of the object 
is visible to the remote user.  This is especially challenging in a 2D videoconferencing setting 
because the camera is only capturing one viewpoint of the object, limiting what the remote user 
can see.  We would like to understand whether this is also true in an immersive 3D 
environment, or whether the local user can simply “trust” what the other user sees.

Finally, with regards to co-visualizing a 3D model, the local user may wish to understand how 
the model appears in the 180 degree rotated view to the remote user.  This could be helpful if 
the local user would like to point at a viewpoint of the model that is facing the remote user (in 
other words, a viewpoint of the model that is behind what the local user can see).

Therefore in the seamless design, there may yet be a benefit to rendering the local user’s 
reflection combined with the reflection of the model, somewhere in the visual layout.  It is not 
immediately apparent whether this layout will offer any benefit, and if it does, whether that 
benefit will come at the cost of immersion and realism of the experience.

4.5 - Interaction modes 

There are two basic types of interaction modes implemented in Holosuite: visualization mode 
and design mode.  

In the visualization mode, we envision that users can grasp at objects, rotate them freely and 
pass the model back and forth between each other using a pinch-to-grasp action with their 
hands.  The user at the remote end, for example, can rotate and push the model towards the 
screen, and the local user will see the model coming through the screen and out to them.  It is 
intended to be a first step towards a future where free-space haptics can be added for tactile 
feedback [14] [15] and tangible holograms [16]. All of this manipulation of the virtual object is 
done using the right hand.

In design mode, the users can create 3D shapes and transform them, similar to how design is 
done on traditional 3D modeling software.  Either user can switch to design mode during the 
interaction by tapping the model with his or her left hand.  This action freezes the model in 3D 
space, and pinch-to-grasp now transforms the model (changing the scale of the model in the 
dimension along the pull direction).  The user can also create a shape, by drawing a two-
dimensional outline (a circle, for example) using their right hand.  This creates a two-
dimensional shape, which can be extruded to a cylinder of an arbitrary size using a pinch-to-
grasp pulling action.
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4.6 - Software architecture 

Interactive end-to-end 3D telepresence poses software engineering challenges similar to 
traditional videoconferencing, but with the added complexity of 3D rendering and holographic 
video fringe computation.  In order to implement this, we must do an analysis and consideration 
of which basic software components are compute bound and which components are I/O bound.  
This allows us to properly parallelize the architecture so that, for example, the next audio, depth 
and color stream frames are being compressed in parallel while the current compressed frames 
are being sent through the network to the remote user.

Identifying which code blocks are compute bound and which are I/O bound guides us on how to 
to structure the software architecture so we can maximize CPU, GPU and I/O to provide a real-
time high quality experience.

The challenges of architecture implementation lie almost completely within how quickly we can 
compress, decompress, send, receive and render the relevant streams of data from remote to 
local user and vice-a-versa.  Realism calls for high framerate and high quality for all input 
streams, while immersion means that GPU-rendered world is implemented in a way such that 
the remote user appears similar to real life and that the visual aesthetic is engaging for the local 
user.

To create such an experience, we must architect a thread scheduler that can efficiently 
parallelize all processing and encoding/decoding of streams, so that data buffers are used 
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FIG 4.6 - This diagram shows the basic code blocks that must be parallelized and implemented 
for a telepresence session in Holosuite.  Local data from depth, color, audio and hand state 
input streams must be processed and compressed, while the corresponding remote data must 
be decompressed and processed for local rendering in real-time, simultaneously.
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appropriately and the CPU and GPU are not waiting on any tasks that can be done right away.  
Hence, we require the use of a threading model that has mutex objects and conditional 
variables, allowing us to avoid race conditions and wake threads when data is available for 
processing, respectively.

Furthermore, for evaluation purposes, we require the capability of switching input devices and 
rendering devices at runtime.  This calls for a properly abstracted modular software design, 
using software libraries that can access different input devices and custom-developed 3D 
renderers for proper holographic rendering (computer-generated fringe computation) and 
holographic video simulation (3D rendering with stereo frames and motion parallax 
reprojection).

Finally, the architecture must accommodate multiple OS platforms, since simulating on 
advanced 3D displays requires coding with Windows APIs, while the MIT Mark II and Mark IV 
holovideo displays run on Linux OS.  This means any software packages and libraries that are 
used must be cross-platform compatible.

The software architecture plan for Holosuite encompasses all of these scenarios, and plans for 
a fully parallelized two-way 3D data and audio stream compression/decompression with a highly 
optimized pipeline and render engine.  We additionally created the requirement that all core 
components are abstracted as software interfaces, so that they can be changed easily (i.e. the 
networking stack can be changed without affecting the input or output blocks).  This allows the 
software to be versatile at runtime, with the ability to handle many different kinds of input 
devices (pre-recorded depth files, or capture devices), while being able to output to multiple 
types of displays.
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5. Development
For implementing interactive end-to-end 3D telepresence, we must create a list of quantitative 
targets that can fulfill our design criteria listed in the previous chapter.  Namely, the real-world 
capture input has to be of high fidelity, at real-time frame rate, with stereo audio and precision of 
hand movement that can allow the user to freely rotate, translate and manipulate virtual 3D 
models.  For rendering simulation and holovideo output, we are further constrained by what 
combinations of CPU and GPU hardware is capable of compressing, decompressing and 
computing 3D rendering scenes in real time with minimal latency and acceptable real-time 
frame rates.  

Furthermore, the capture-to-render pipeline must be developed in a way so that while the 
computer is compressing the current frame of audio or video, another thread can concurrently 
capture, process and queue the next frame for compression.  As stated in the Design chapter, 
identifying which processes are I/O bound and which are compute bound allows us to 
implement concurrency wherever possible, so that the CPU and GPU are being utilized and not 
remaining idle when there is data that is available to be processed.  For low latency, however, 
we can only implement at most just two stages of pipelining, as each additional stage of 
pipelining will add a frame of delay to the processing and rendering of video and audio data, 
which can be detrimental to the user experience (especially considering that at a 30 fps capture 
rate, we are delayed by at least 33 ms capture of real-world 3D data input per frame).

5.1 - Quantitative targets for building an immersive and realistic 
experience 

The following tables describes the quantitative targets used as our guide for hardware/software 
implementation decision-making, to make maximum use of hardware capabilities.
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TABLE 5.1.1 - Video capture must be low latency, high frame rate with high accuracy and high 
depth resolution to create a realistic 3D scene of the user. Simulated rendering requires the 
ability to render high frame rate in stereoscopic output.  Holovideo rendering targets are limited 
by the Mark IV display.

3D Capture 3D Simulated Render Holovideo Render

Frame rate ~30fps ~60fps (120 stereo) ~30fps

Spatial Resolution 640x480 1920x1080 Stereo 600x468 HPO Wafels

Depth Resolution 16-bit (w/ 1 mm 
accuracy at 1 m)

16-bit -

Color Resolution 24-bit 24-bit -

Latency < 34 ms < 17 ms < 34 ms



5.2 - 3D capture device 

Although there are various capture solutions available to academic researchers, we decided to 
use a commodity depth camera for Holosuite development, since we could meet the 
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FIG 5.2 - ASUS XTION Pro Live is a commodity depth-sensing camera with stereo microphones, 
a structured-light depth sensor operating in IR spectrum with an RGB sensor for color image 
capture.  The unit is self-powered via USB 2.0 port, giving data similar to the Microsoft Kinect 
with a smaller footprint and no need for external power supply.

TABLE 5.1.2 - High fidelity audio 
capture and playback in stereo, 
based on 960-sample frames.

TABLE 5.1.3 - Hand input should have high accuracy 
and low latency for providing proper feedback of 
hand state through 3D model state.

Hand State Input

Frequency 120 Hz

Accuracy 0.1mm

# Hands 2

Latency < 9 ms

Gestures Pinch and Rotate

Audio 
Capture

Audio 
Output

Frequency 44.1 KHz 44.1 KHz

Resolution 16-bit 16-bit

Channels 2 (Stereo) 2 (Stereo)

Latency < 20ms < 20 ms



development targets with the added benefit of being able to capture with hardware available to 
consumers.

The ASUS XTION Pro Live includes sensors for RGB and depth that give us data of real-world 
scenery at VGA (640x480x24) and QVGA (320x240), respectively.  Although the depth sensor is 
only QVGA, it is upscaled by the firmware to VGA resolution.  The depth camera gives 12-bit 
depth resolution, with an accuracy of 1 millimeter at 1 meter distance.

The ASUS XTION PRO Live uses a structured light approach to measure the depth of a scene, 
with a field-of-view 58˚ horizontal and 45˚ vertical, and a minimum distance of 0.85 meters.  
These specifications will be able to capture an accurate 3D model of a person at 1 meter 
distance from the camera, with the caveat that it cannot capture scenery outdoors, which our 
design specifications do not require.

In addition to the depth and color sensors onboard, the camera includes stereo microphones for 
audio capture at 48 KHz sampling rate and 16-bit resolution, which is ideal for high-quality voice 
capture.

5.3 - Hand-tracking device 

Although it would have been possible to perform hand-tracking with the 3D capture solution, the 
low frame rate and minimum distance issues facing commodity depth-sensing cameras make it 
difficult to perform fluid and natural hand pose and tracking estimation.  Hence, we looked 
toward a solution that could accurately track hands with minimal latency and high frame rate.
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FIG 5.3 - The LEAP Motion is an advanced hand-tracking solution, operating over USB 3.0 to 
give 120 FPS tracking of two hands in 3D space, with full skeletal articulation and position for 
every joint in the hand, including the ability to detect some discrete gestures, such as swipe, 
circle and tap.



The LEAP Motion, another commodity device is capable of tracking two hands, giving 0.1mm of 
accuracy position tracking for every joint in two hands simultaneously.  The LEAP SDK, which 
provides access to the device, can also recognize a few simple gestures, such as pinch, circle 
and tap.

5.4 - The program: using C++11 and Holosuite executable 

Implementing the architecture of Holosuite requires a programming language that compiles fast 
native CPU code, has native threading support, with a programming paradigm that is conducive 
to development of interchangeable I/O code blocks for interfacing with hardware (object-
oriented programming model).  In addition to this, the programming language must be able to 
access a large number of cross-platform libraries for hardware SDKs, audio and video codecs, 
computer vision processing and 3D rendering.

For these requirements, C++ is an obvious choice, as it gives the power of being able to 
compile code to fast assembly, while maintaining properties of high-level abstraction for 
complex software engineering projects, which low-level languages such as C are lacking.  The 
creation of the C++11 standard introduced native threading support to C++, without which 
coding a responsive user experience would have been much more difficult.

The programming effort involved in the implementation of the architecture, as imagined by FIG 
4.6, and defined in Appendix A, Appendix B, and Appendix C was considerable, resulting in 
over 17,000 lines of code.  It was created as a cross-platform CMAKE project, which could 
compile on Windows and Linux primarily, though it was also tested to compile on OS X.  It was 
coded using Visual Studio 2013 and Eclipse IDEs.

The resulting Holosuite C++11 project compiles into a command line executable that has 
program options for starting a session as a server, client, or loopback (which simply takes the 
input devices, compresses, transmits, receives and decompresses input streams locally and 
renders the resulting output on one machine).  The loopback mode was created for the purpose 
of testing the networking stack, along with codecs and renderer without the necessity to debug 
and develop on two machines.

With the Holosuite executable, the user can also set a variety of input options, such as what 
type of camera input to use, the resolution settings for capture devices, the frequency for audio, 
or codec settings for compression rates and render options.

5.5 - The program: open source software libraries 

Open source libraries were used extensively in the development of Holosuite.  Relying on 
community-built software allowed the project to be feature-complete and cross-platform, with the 
ability to import various 3D model formats and perform video, audio and depth data 
compression.  The table in Appendix D denotes which open source software libraries are used 
in Holosuite, their version and the respective purposes.
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Libraries such as Point-Cloud Library and OpenCV were strategically chosen, as they provide 
many different functions for digital signal processing of depth and color streams, which can be 
further utilized for improving the fidelity of the image, rendering and segmentation of the user.

5.6 - Audio compression 

For the sake of making Holosuite a realistic experience, we wanted to take advantage of the fact 
that the ASUS Xtion Pro Live has a stereo microphone layout.  Using stereo audio input, we can 
get an audio signal with better fidelity than normal video conferencing, along with high sampling 
frequency to match CD quality.

For these requirements, some common codecs were considered, such as MP3, OGG and even 
lossless audio codecs such as FLAC.  Lossless codecs would prohibit usage across common 
internet connections, since the bitrate for lossless audio is too high and the benefit of lossless 
audio is dubious, as speech frequencies comprise only a small band of frequencies in the 
auditory spectrum (usually quoted as being between 20 Hz - 22 KHz).  Furthermore, the 
traditional PC speaker system does not reproduce the low end range of frequencies which can 
be sampled by CD-quality audio.

For these purposes, we made the decision to use a newer, open-source audio codec built 
specifically for high-quality, low-bitrate real-time telecommunications, called Opus.  The 
description of Opus on the website is as follows:

Opus can handle a wide range of audio applications, including Voice over IP, 
videoconferencing, in-game chat, and even remote live music performances. It can scale 
from low bitrate narrowband speech to very high quality stereo music. Supported 
features are:

• Bitrates from 6 kb/s to 510 kb/s
• Sampling rates from 8 kHz (narrowband) to 48 kHz (fullband)
• Frame sizes from 2.5 ms to 60 ms
• Support for both constant bitrate (CBR) and variable bitrate (VBR)
• Audio bandwidth from narrowband to fullband
• Support for speech and music
• Support for mono and stereo
• Dupport for up to 255 channels (multistream frames)
• Dynamically adjustable bitrate, audio bandwidth, and frame size
• Good loss robustness and packet loss concealment (PLC)
• Floating point and fixed-point implementation
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Started as an attempt to make a low-bitrate, high-quality audio codec for telecommunications, 
Opus has turned into a competitive general-purpose audio codec, rivaling that of the well-
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FIG 5.6.2 - Opus covers low-latency encoding with a wide 
bitrate range, for high quality encoding.

FIG 5.6.1 - Listening tests show Opus covers from narrowband to fullband 
stereo at competitive quality across low and high bitrates.



established MP3, Vorbis and AAC in listening tests, with the added advantage of being low-
latency (which is critical to telecommunication).2

The Opus API offers a flexible selection of bitrates and encoding qualities, which we 
programmed to be changeable options as part of the Holosuite main executable.
The default settings we used were 48 KHz sampling rate, fullband stereo with an encode frame 
size of 960 samples.  This resulted at high quality stereo audio with low latency, which was 
determined to be sufficient for the purposes of understanding one another clearly, and to be 
able to distinguish sounds coming from the left vs. right channel.

5.7 - Virtualizing the user from real-world data to 3D rendering 

To visualize the remote user, it is not only necessary to have color information, but also a depth 
component for each color element.  This is because depth information is required for rendering 
stereo and parallax effects.

Fortunately, using a depth-sensing camera solution, it is somewhat trivial to end up with real-
world 3D data of the remote user.  However, there was a question of whether to create a mesh 
of the user or to use a straightforward point-cloud rendering approach.  A mesh can be helpful in 
compression as it is inherently a low-information data structure, whereas a point cloud data 
structure is more faithful to the original raw captured data coming from the camera.  To further 
complicate matters, the method of visualizing the user can also affect which segmentation 
method, compression algorithms to use and the rendering approach, which makes the decision 
somewhat tricky.

One of the benefits of using Point Cloud Library is that it allowed us to test various scenarios to 
determine the best structure and method for virtualizing the real-world 3D data captured from 
the camera.  Ideally, we can state that a 3D mesh of a person would offer the best visual quality 
and be most appropriate for rendering, as modern GPUs are made strictly for the purpose of 
rendering a high number of triangles in real time.

This assumption, however, seems to ignore some other other important considerations.  We 
tested the fast meshing function in Point Cloud Library to get an idea for how meshing would 
look, and discovered several drawbacks:  first, the quality was not so visually appealing since 
we were using only one camera, holes and rough edges in the mesh were quite apparent and 
difficult to tolerate visually.  Although this could be solved by adding additional cameras, and 
additional image processing, it would add further burden to the CPU and USB bus which was of 
great concern.

Second, the visual quality of the meshing function had the negative effect of putting the person’s 
likeness into the “uncanny valley”, presumably because the reduction of data points and 
averaging of colors and depth values created an unrealistic model of the user which appeared 
artificially generated, almost as if it was drawn by a 3D artist, not sampled by an image sensor 
from the real world.

 Opus specs and figures from http://www.opus-codec.org/comparison2
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Finally, meshing algorithms also take a lot of compute power, which would hurt the performance 
of compression and decompression of audio, depth and color streams on the CPU.  Even if 
done on the GPU, it would undoubtedly limit the compute power for performing fringe 
computation for holovideo displays, so for these reasons, so creating a mesh was an 
undesirable option.

It turned out that segmenting the user by doing a simple threshold of depth data within a 
reasonable range (assume that the user sits stationary somewhere between 1 and 1.5 meters of 
the camera and there are no other objects in the field of view of the camera at this depth range) 
combined with a point cloud data structure rendering was enough to create a convincing and 
realistic result.

Conversion to a point cloud is somewhat trivial, as the ASUS Xtion Pro Live gives us a depth 
image which is registered to the color image, meaning that for each X, Y in the color and depth 
streams, the color and depth data is aligned and matching.  The major caveat here being that 
depth data from an image sensor is given in pixel coordinates, not in real-world coordinates, 
which means that we need to convert to real-world coordinate space from a 640x480 grid of 
depth values.  

Therefore, in order to build a point cloud, we need a robust algorithm that combines red green 
blue and depth information for each color and corresponding depth image element to create an 
individual voxel in real-world 3D space, while also re-projecting each voxel into real-world 
coordinates.  This must be done for every frame, at a rate of ~30 frames per second, as this is 
the design target for creating realistic and fluid presence of the remote user.
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FIG 5.7.1 - This scene is taken of a user facing the depth camera, and the resulting 3D data is 
rotated to visualize the side angle of the face.  On the left is the simple point cloud 
representation of a segmented user, the right image shows the scene from the same angle using 
fast mesh implementation from Point Cloud Library.  Notice that the edges and holes on the 
mesh are much more difficult to tolerate visually.   In the point cloud we can cover and smooth 
these simply by changing the size of the points. 



To do this, we start by capturing two images (one color image of 640x480 elements with an 
RGB value, and a depth image of 640x480 elements of 12-bit Z, or depth, values).  This must 
be converted to a data structure that can be processed easily by a GPU shader, where the X, Y, 
Z field of each voxel contains its position in 3D space (not the same as the depth value’s 
position in the pixel grid).  This, called the pixel spread function, can be calculated by a 
trigonometric function relating the spread of a voxel as its distance gets further from the camera, 
and the camera’s field-of-view.

The basic voxel structure, pictured above in FIG 5.7.2, is repeated for every pixel element in the 
captured scene.  In our capture method, we have 640x480 image sensor resolution, which 
amounts to 307,200 individual voxels in 3D space, rendered as points with 8-bit red, green and 
blue values.  In practice, however, we end up rendering many fewer points, as segmenting the 
user and removing the background during a pre-processing step reduced the number of points 
for processing. This also sped up our rendering frame rate and helped to creating a more 
immersive experience where the background can be drawn artificially in a way that emphasizes 
the subjects.

The pseudo-algorithm for determining the real-world position of a voxel in a right-handed 
coordinate system from x, y in the pixel map is as follows:
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FIG 5.7.2 - The voxel data structure is a vector composed of 32-bit floating point values in X, Y, Z 
for the position and 8-bit color values for red, green, blue and alpha of each voxel in the image.  
This is a dense point cloud structure, meaning that for each X*Y resolution frame in the scene, 
we end up with X*Y number of voxels.  However, because some data points from the depth 
sensor are unreliable, or bad (0 depth value), we must set X, Y, Z to NaN (Not a number), so our 
renderer knows to not process such voxels.

foreach depth_value in depth_image
if depth_value == 0

voxel.x = voxel.y = voxel.z = FLOAT_NaN;
voxel.r = voxel.g = voxel.b = 0;
continue;

else
voxel.z = depth_value * 0.001f;   //convert from mm to meters
voxel.x = (y / y_image_resolution - 0.5f) * voxel.z * 2 * tan(vov/2);
voxel.y = -(x / x_image_resolution - 0.5f) * voxel.z * 2 * tan(hov/2);
voxel.r = color_image[x,y,red];
voxel.g = color_image[x,y,green];
voxel.b = color_image[x,y,blue];

end if
voxel.a = 255;

end foreach



The voxel Z position is determined simply the depth sensor value at a given x, y coordinate. This 
is converted to meters (the raw data is given in millimeters)

The voxel X position is determined by the equation

where y is the pixel coordinate in the vertical dimension of the image, resy is the resolution in the 
vertical dimension, and fovy is the field-of-view of the capture device in the vertical dimension 
and vz is given by Eq. 1.

Likewise, the voxel Y position is determined by the equation

where x is the pixel coordinate in the horizontal dimension, resx and fovx are the resolution and 
field-of-view of the image sensor in the horizontal dimension, respectively, and vz is given by Eq. 
1.

In Holosuite, the point cloud generation function can either run as the last step before rendering 
the scene, or it can be done at capture-time.  This is because Holosuite implements two 
different types of compression that can be chosen at runtime, one that operates on point cloud 
data and another that operates on raw color and depth streams.  Holosuite will choose at which 
step in the capture-to-render pipeline to generate the point cloud, based on which compression 
algorithm is selected by the user at runtime.

5.8 - Depth and color image compression 

Depth and color image data combined account for the vast majority of data that must be 
transferred over the network, both ways, in real time to create the experience of end-to-end 3D 
telepresence. There are two methods which we explored and eventually implemented for 
compression: a lossy point-cloud based compression and hybrid image-based compression 
scheme.

Point Cloud Library contains a compression scheme for data already in a point cloud structure 
which performs a spatial decomposition on the dataset by converting the point cloud structure 
into a hierarchical data structure (octree data structure).  It also exploits temporal correlation 
(motion estimation) in the point clouds between captured frames, allowing the algorithm to only 
send the differences between key frames to save bandwidth [17].
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(Eq. 2)

(Eq. 3)



Octree compression has some key advantages, in that changing to a hierarchical data structure 
allows us to perform a fast voxel filter on the data set, greatly reducing the number of data 
points that must be transmitted and rendered on the remote end, at the cost of spatial resolution 
of 3D data.  This is typically an ideal situation if there will be some post-processing done for 
creating a mesh on the GPU on the remote end, as the remote connection will receive a sub-
sample of the point cloud, a minimum amount of 3D points determined to triangulate the cloud 
and turn it into a mesh.

For transmitting a dense point cloud, however, this method is not very effective, as the 
implementation in Point Cloud Library takes great compute power to compress each frame.  For 
this reason, we also implemented a hybrid 2D signal image compression method, which creates 
a lossy color image packet per frame combined with a lossless compressed depth image.

This hybrid approach works by using the zero-latency compression option with FFMPEG/
libx264, an open-source h.264 codec, along with zlib open-source library for lossless 
compression of depth data.  Before the color and depth frame are compressed, they are 
processed through a masking function, which sets all of the background pixels (the segmented 
pixels not related to the user) in the color image to null-value, reducing entropy of the data. This 
effectively allows the depth to be compressed to a smaller size, and the h.264 compression to 
focus most of the encoding effort on the user’s face and body.

In the hybrid compression technique, Holosuite will generate the point cloud on the receiving 
end by using the remote user’s camera intrinsics (sent during a handshake packet when the 
network connection is formed between two Holosuite sessions).  For a detailed explanation on 
the handshake information, see the Networking section of this chapter.  This approach is 
desirable as it perfectly retains the 3D position data for each voxel in the point cloud, along with 
industry-standard color video compression, which can be further optimized as many devices 
today carry h.264 codecs built into hardware.  It also places low burden on CPU and GPU, as 
the compression is done with least effort and lowest latency, while allowing the receiving end to 
take the burden of generating the 3D data for rendering.
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FIG 5.8 - The hybrid image-based compression scheme compresses the color frame using lossy 
H.264 low-latency video compression, and ZLIB for lossless depth stream compression.  these 
two compressed frames are combined into one TCP packet to be sent to the remote host.
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5.9 - Shared virtual 3D model 

The shared virtual 3D model data is imported from a file in one of the users’ computer, sent 
once as a collection of vertices, normals and vertex colors from the owner to the remote user 
when the connection is established.  No compression is done on the 3D model, as it is sent only 
once.

However, when the model is rotated, translated or scaled by the local user, the state of the 3D 
model is sent to the remote user.  This allows the remote user to see the state change of the 3D 
model in real time, without having to receive the vertices of the 3D model every time the state of 
the model changes.

3D model files are imported via “assimp”, an open-source library that can read many different 
3D asset files, such as OBJ, PLY, 3DS, etc.  The assimp API gives developers the ability to 
import vertices, normals, and colors of the model in a standard format, as well as the ability to 
simplify and triangulate a mesh so that duplicate vertices are removed.  We implemented these 
features so that any arbitrary 3D model can be imported and stored in CPU memory in an 
efficient manner.

Once the 3D model is imported, but before it is rendered, we have to normalize the dimensions, 
so that the initial size of the 3D model is reasonable for visualizing and manipulating.  For this, 
we employed the “Miniball” algorithm [18], which finds the smallest bounding sphere of all points 
in an N-dimensional space.  The bounding sphere of the 3D model allows us to determine the 
scaling factor necessary to resize any arbitrary 3D model to a normalized scale.

5.10 - Networking 

Holosuite’s networking component uses TCP and runs on its own thread for transmitting packets 
and in the background will schedule and combine data for packets to be sent.  Receiving is 
done synchronously, parsing incoming data and queuing each packet to separate threads for 
further processing, which is stored in a standard Type-Length-Value (TLV) format.

TLV format allows us to send different types of data of arbitrary length through a TCP socket, so 
that the remote end can easily parse and process the incoming data.  For telepresence, we can 
send any number of “Types” of packets, such as depth data, color data, audio data, 3D model 
vertices state, etc.  Also, since we are using compression on many of these streams, we don’t 
know how big the frames for audio, depth and color streams will be until just before they are 
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TYPE LENGTH VALUE

FIG 5.10 - One packet in Holosuite has a 32-bit value for TYPE, and LENGTH, and packet data is 
stored in VALUE, which is a number of bytes determined by the LENGTH field.  A type can be 
audio, color, depth, 3D model state, 3D model vertices, client name, capture resolution, audio 
resolution, etc.



sent to the remote end.  The variability in the length of the data for different data types makes it 
necessary to employ a system such as TLV.

Holosuite can be run as a client, or a server.  The client mode will require the user to enter an IP 
address or hostname of a machine, and the server is responsible for accepting a socket 
connection from clients.  Once the connection is formed, a handshake packet is sent by both 
machines to each other, giving some important specifications about the data format and client, 
such as protocol version, number of audio channels, audio sampling frequency, depth and color 
resolution, camera field of view, etc.

The structure of the handshake packet is as follows:

This handshake information is used to appropriately parse and decompress the incoming audio, 
color and depth streams, and gather information necessary for generating a point cloud of the 
received depth and color streams.

We considered other networking protocols, such as UDP, and another lesser-known protocol 
called “UDT”, which is built on top of UDP, but with TCP-like properties.  UDP was not 
implemented in the initial stage of development because we preferred to first implement a 
networking stack that could reliably send full data packets across the internet.  UDP is 
connectionless and data is not guaranteed to arrive, nor is it guaranteed to arrive in order, which 
complicates the networking development.  When we tested an implementation of the TCP 
protocol, it was good enough to do live streaming of all the streams simultaneously in real-time 
with minimal latency, so we opted to maintain the networking stack on a TCP socket connection.  
Holosuite could theoretically take advantage of UDP by implementing more robust frame-
dropping behavior, which could help when there are moments of bandwidth degradation. 

For testing the networking component, we implemented a “loopback” session mode, which runs 
a server with the input capture devices and connects a client session with the output (renderer 
and audio) devices.  This was implemented to verify the correctness of the networking code 
without the necessity for running a server and client on separate machines, while also testing 
the encoding and decoding of depth, color and audio data.
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struct HoloNetProtocolHandshake 
{ 
  uint32_t magicNumber;      
  uint32_t protocolVersion;      
  uint8_t clientName[HOLO_NET_NAME_STR_SIZE];      
  int videoCodecType;      
  int audioCodecType;      

  uint32_t rgbazWidth;        
  uint32_t rgbazHeight;      
  float captureFPS;      
  float captureHOV;      
  float captureVOV;      
  int audioNumChan;      
  int audioFreq;      
  int audioBitDepth;      
};



5.11 - Holographic video simulation rendering 

In the Introduction chapter of this thesis, we described the necessity for implementing a 
simulation renderer—i.e. a renderer that can produce some of the most important cues of 
holographic display rendering to simulate the ideal Holovideo display.  As we did not particularly 
aim to take advantage of accommodation cues because of the relative shallowness and 
simplicity of the scenes, we employed the usage of advanced 3D displays made by ZSpace, 
Inc. which provide reliable stereoscopic and motion parallax tracking.

The ZSpace advanced 3D display requires the user to wear glasses, which provide left and right 
passive stereoscopic vision by alternating stereo frames with reverse polarity, allowing the left 
eye of the user to see only the left frame of the scene and the right eye to see the right frame.  
The glasses are also designed with 5 white reflective dots on the front, which reflect illuminated 
IR light and are captured by IR cameras built into the display for tracking the user’s head 
position and orientation in 3D space, relative to the display.

The tracking system on the ZSpace display is very robust, and the ZSpace API is able to give us 
not only the position and orientation of the user’s head, but conveniently provides the 
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FIG 5.11.1 - The ZSpace display, with glasses and a 3D stylus used for interaction in ZSpace 
application demos (not used in Holosuite).



transformation matrix, which we can apply to the projection matrix in OpenGL to create the 
stereo frames and motion parallax reprojection for every frame in the render loop.

Thus, in setting up the simulation renderer, there were two simple steps invloved: first was to 
create an OpenGL renderer from scratch, one that would visualize the remote user’s point cloud 
along with the shared model and an arbitrary background.  This OpenGL component was written 
to take advantage of OpenGL 3.0 calls that allow us to quickly copy large chunks of vertex, 
normal and color buffers and draw them all at once, instead of the traditional method of making 
a function call for each vertex, color and normal in the 3D dataset.

The second step was to access the ZSpace API for the head tracking information, to get the 
transformation matrix and apply it to the projection matrix.  This was a relatively straightforward 
procedure, although we had to tweak the position of the remote user’s point cloud and model to 
put the user behind the display plane and the model in between (in the middle) of the display 
plane.  Once we had the transform matrix, we could create stereo frames, using quad-buffered 
stereo buffer flipping built into OpenGL, while reprojecting the view of the scene every frame 
draw for motion parallax with the new transform matrix.

The OpenGL simulation renderer was also incredibly useful for debugging and testing, as 
development could be done on a normal LCD display.  We implemented a switch in the 
Holosuite program to enable ZSpace rendering, so that any changes that were made to the 
renderer in OpenGL could easily be tested after some development, without the necessity of the 
ZSpace display. 
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FIG 5.11.2 - The simulation OpenGL renderer in perspective projection, showing a segmented 3D 
point cloud of the remote user from a 3/4 angle, along with the Stanford Bunny scanned 3D 
model, imported from a file.  The background is a simple 3D grid of a box—the lines in the 
background help to emphasize the motion parallax effect, while creating a sense of immersion 
for the viewer, drawing his or her attention only to the subjects in the rendered 3D scene.



5.12 - CGH (Computer Generated Holography) rendering 

There are a few methods we considered for generating holographic images through 
computation.  Traditional methods, such as Fresnel computation, involve simulating the physics 
of the way light interferes with a 3D scene to produce an digital representation of the 
interference pattern.  This method is akin to modeling the physical creation of an analog 
hologram on a glass coated with light-sensitive material.  Fresnel computation has been known 
since at least the late ‘70s, and can construct a highly realistic image, albeit at the cost of 
incredible computation power.  Consider that such a method typically must model the behavior 
of light interfering at a single 3D point in a scene, as it it interferes with every other 3D point in 
the scene, repeated for every 3D point in the scene.  This has a high computational complexity, 
making it impractical for real-time computation of high-resolution 3D scenery—taking minutes to 
compute a single holovideo frame on contemporary GPU hardware.  For this reason, we did not 
consider Fresnel computation as a viable option for Holosuite.

Newer approaches, such as the diffraction-specific hologram computation approach, do not 
attempt to simulate the interference pattern through a physics model, rather they solve the 
problem of displaying a holographic image in a backwards way.  That is to say, the diffraction-
specific approach aims to discretize the holographic image into fundamental elements first, 
solving for what these discrete elements on the display would show to the user.  This is similar 
to how pixels on a normal 2D display are generated, but with a directional vector dimension in 
addition to the 2 spatial dimensions.  This fundamental element, called a “hogel” (short for 
holographic element), is visually similar to a pixel in that it constructs an image as a grid of 
discrete elements in the horizontal and vertical space.  Unlike a pixel, however, a hogel can vary 
its color value along the incident viewing angle.  From the viewer’s perspective, this is 
experienced as the image changing depending on the angle at which he or she is looking at the 
holovideo display.
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FIG 5.12.1 - This figure from J. Barabas et al. [9] shows the difference between pixels, hogels 
and wafels.  note that wafels are able to produce curvature of a wavefront, which enables the 
accommodation cue for the user (ability for the eye to focus).



The latest variants of diffraction-specific algorithms allow us to further refine the visual quality of 
the image by producing a new type of fundamental element, called a “wafel” (or wavefront 
element).  One of the key benefits of using wafels over hogels is that while hogels rely on 
generating hundreds of views to produce a smooth motion parallax experience, wafels can 
produce smooth motion parallax with much fewer views (as few as 16).  This is because wafel 
computation can better approximate wavefront curvature, saving precious compute power that 
can be used for other stages in the hologram generation.
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FIG 5.12.3 - Figure from S. Jolly, E. Dreshaj and V. M. Bove, Jr. [19] showing the stages of GPU 
implementation of full color diffraction-specific hologram image creation used in the Mark IV 
display.
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FIG 5.12.5 - The viewing double-frustum projection matrix used to generate each view in the 
parallax view set as explained by Smithwick, Barabas, Smalley and Bove, Jr. [4].
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FIG 5.12.2 - The first stage of diffraction-specific algorithm for the Mark IV: the parallax view set 
is generated from the 3D scene, composed of 16 discrete views which represent the basis of the 
“light-field”.  The left set is the color component of the 3D scene, while the right set is the 
corresponding depth component.  The view set begins at the top-left, moves left-to-right, where 
the bottom-right is the last image in the view set.



In Holosuite, we employed a diffraction-specific rendering algorithm for two different holovideo 
displays: the Mark II monochromatic red-laser display and the Mark IV full-color display.  As any 
other diffraction-specific algorithms, the process of generating the hologram for each frame 
follows a basic two stage process: generating the parallax view set and computing the hologram 
from the parallax view set.

The first stage, similar to normal GPU rendering, involves creating the light field by way of 
transforming the geometry of the 3D scenery to create the parallax view set.  In our approach 
we form a collection of renderings of the same scene, from different perspectives in the 
horizontal dimension taken across a viewing angle.  Since both displays are HPO (horizontal 
parallax only), we need only compute a parallax view set in the horizontal dimension; however, 
we must apply a transformation to the scenery so that the view set is rendered orthographically 
in the horizontal dimension, but in perspective format in the vertical dimension.  This is because 
in the next stage of generating a hologram, we must use the resulting parallax view set to 
compute the hologram with accurate to real-world geometry in the horizontal dimension.  See 
Fig 5.12.2 for an example image of the view set.

Note that the first step of the first stage is nearly identical to the OpenGL simulation renderer 
discussed in the previous section—we create a 3D scene with a lighting model, occlusion, and 
draw our point cloud of the user.  However, in addition to the normal rendering pipeline, we 
create the parallax view set of our scene from many angles, to prepare for the next stage in 
hologram generation.

The second stage, known as the hologram computation, is where the light field information is 
encoded in a digital signal from the parallax view set, along with the physics of optical 
propagation of the display—the “diffraction signal”.  In literature this is also referred to as 
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FIG 5.12.4 - The second stage of diffraction-specific computation for the Mark IV: the hologram 
is generated from the parallax view set, by computing abutting wafels in every scanline.  The 
figure shows a segment of the resulting computation, output as a frame buffer signal to the Mark 
IV holovideo display via the GPU VGA port.  Each line in the image corresponds to parts of 
analog signal sent to the acousto-optic modulator, which diffracts laser light to produce a 3D 
image of the user’s point cloud.



computing the “fringe pattern” or “interference pattern”.  The signal is computed on GPUs using 
GPGPU (OpenCL or CUDA), and output through the analog VGA port, connected to the light 
modulator (in our case, a guided-wave acousto-optic modulator).

In the hologram computation stage, we use CUDA to compute a “chirp” for each wafel in the 
holovideo display (600 per hololine) from the Z-value of the view set generated in the first stage.  
The chirp can be described as the signal that encodes the depth of a wafel along a directional 
vector, representing a diffraction grating. The transmittance function for an unmodulated chirp is 
given by

where x is the position on the composite hologram transmittance function, (x0 , z0) is the position 
of a scene point to be reconstructed, and θr is the angle of the reconstruction beam relative to 
the normal of the hologram plane, and λ is the wavelength of the illumination beam.

This signal, however, has to be further modulated to represent color information (varying 
intensity of light along a directional vector) from the red, green and blue channels of the view 
set. For monochromatic displays, such as Mark II, the chirp can easily be modulated by the 
luma signal of the view set. Having a color holovideo display (such as Mark IV), means that one 
channel in the holographic display must carry the signal from all three color components of the 
3D rendering.  Therefore, when modulating a chirp for the Mark IV, we have to employ a signal 
processing technique known as SSB (single side-band modulation) to combine the frequency 
contributions from red, green and blue into one channel.

The transmittance function for an SSB-modulated chirp is given by the equation

where the terms are the same as in Eq. 4, and f0 is the material carrier frequency described by 
S. Jolly et. al [19].

The final wafel generation for Mark IV is given by

where fj = NfjT /Pw is the j-th spatial upconversion frequency corresponding to the j-th temporal 
upconversion frequency fjT , x is the spatial position on the composite hololine, xi is the wafel 
center position on the composite hololine, θr is the angle of the reconstruction beam relative the 
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(Eq. 4)

(Eq. 5)

(Eq.6)



hologram plane normal, λj is the wavelength of the j-th color channel, and (mi, zi) are the color 
and depth values retrieved from the i-th parallax views in RGB and depth [19]. 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FIG 5.12.6 - Figure from S. Jolly, E. Dreshaj, V. M. Bove, Jr. [19] describing the pipeline for 
generating abutting wafels that make up the entire display of the Mark IV.
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6. Evaluation
Since the scope of the development of Holosuite covers solving technical problems, as well as 
implementing an HCI (human-computer interface), we performed a hybrid quantitative-
qualitative analysis to evaluate the result of the application.

For the quantitative analysis, we were chiefly concerned with whether we could perform 
compression, transmission and rendering for end-to-end 3D telepresence in real time.  The 
compression levels would need to be acceptable for an average home broadband connection 
(in the range of 10-20 Mbps), audio, depth and color frames must be encoded with low latency 
and rendered at high frame rates (between 20-30 fps).

6.1 - Operating hardware specs 

Holosuite was evaluated on two PCs built with the same component build.  We used high-end 
GPUs, necessary to render complex point clouds, and also to compute holograms for each 
frame in real-time.  We chose CPUs that could handle many threads, with large cache sizes as 
we would be concerned about a memory copy operation wiping out the entire cache space 
every time a frame is copied.

As we were not I/O limited from the capture side so much, nor memory constrained, our most 
important considerations were compute power for GPU and CPU, with other specs being 
secondary.  The table above shows the basic computer configuration which should be easy to 
reproduce on any commodity PC hardware setup.

Although Holosuite was developed to be cross-platform, we evaluated interaction on Windows 
8.1 OS, as ZSpace displays do not operate with other operating systems, leaving us with 
Windows as our only choice.  We do not expect that other operating systems will differ 
significantly in the experience.  We evaluated the rendering algorithm for holovideo displays in 
Windows and Linux.

6.2 - Quantitative analysis: compression, networking and latency 

In the Development section, we mentioned that Holosuite contains a loopback mode, used to 
develop, debug and test the networking and compression components on a local machine.  
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TABLE 6.1 - PC specs for evaluating Holosuite.

Part Type Description

CPU Intel i7-4820K CPU 4 Cores / 8 Threads, 10 MB Cache @ 3.7 GHz

GPU NVIDIA Quadro K6000 Quadro required for OpenGL Quad-buffered Stereo

RAM 8 GB DDR3 800MHz, RAM size is more than enough to process and compress



Using the loopback mode, we are also able to quantify the overall latency of the compression-
to-render pipeline without the variable latency of remote networking over an internet connection.  
Using C++ 11 chronology functions, we were able to measure the CPU time before and after 
compression and decompression of color and depth frames, along with other functions that 
contribute to latency time.

We found that point cloud generation was done in 2 ms per frame, while rendering a full frame 
(populating vertex buffers and swapping OpenGL buffers) took just 13 ms.  At 30 fps capture, 
the process time for capturing and segmenting each depth and color frame was 35 ms.

From the critical path, shown in FIG 6.2.2, we calculated approximately 68 ms time to capture, 
process, compress, decompress and render a 3D scene.

As we are using TCP networking, there is also additional latency to consider, as TCP requires 
acknowledge packets to be received by the sender, which means the round-trip (commonly 
referred to as “ping” time) of the connection must be added to 68 ms to measure the total 
latency, before pixels or wafels are seen by the remote viewer.

After the capture-to-render pipeline, there is, of course, one additional measurement of latency 
which has to do with the display technology.  The display lag of the ZSpace display is unknown, 
but we assume that since the ZSpace was built for real-time interactivity and works well for this 
purpose, the display lag can be considered negligible for simulation rendering.  Likewise for the 
Mark IV, we assume that the 30 fps scan rate is sufficient to account for the latency.
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Capture Compress Tx Decompress Pt. Cloud Gen Render

35 ms 15 ms ? ms 5 ms 2 ms 13 ms

FIG 6.2.2 - The capture-to-render pipeline shown above is the critical path to displaying a frame 
of a compressed 3D scene in an OpenGL 3D environment.  The total latency is 68 milliseconds, 
not including the network latency, which can vary widely across the internet.  red signifies the 
highest lag, followed by orange, yellow and green being the lowest lag.

TABLE 6.2.1 - Audio, color and depth are compressed and decompressed on separate threads, 
so the function of their latency put together is determined by the slowest component, which is 
the depth compression and decompression (also known as the critical path).  Note that 
compressed depth is the largest bandwidth bottleneck as well. 

Color Depth Audio

Compression < 1 ms 15 ms 1 ms

Decompression 1 ms 5 ms < 1 ms

Compressed Size 1-4 KB 20-30 KB 254 bytes

Frame Dimensions 640x480 (24-bit RGB) 640x480 (16-bit depth) 2 x 16-bit @ 44.8 KHz

Theoretical Bandwidth 30-120KB/s 600-900 KB / sec 8 KB / sec



6.3 - Quantitative analysis: responsiveness and frame rate (simulation) 

Since the focus of the Holosuite user experience is mainly on the visual aspect of telepresence, 
we wanted to be sure that the rendering stage of the pipeline was convincingly realistic and 
immersive, as per the specifications laid out in the Design section of this document.  This 
means that the rendering frame rate should be high and consistent (minimum 20 fps, ideally 30 
fps or higher).  In addition to the visual experience, the experience of the interaction 
(manipulating the model) should be smooth and responsive.  Since the Leap Motion is capable 
of sampling at 120 fps, there is yet more benefit from rendering higher than 30 fps, despite that 
the user’s 3D model is only refreshing at 30 fps.  Finally, rendering at 60 fps means that motion 
parallax reprojection will occur on every frame re-draw, adding to the fluidity of the experience, 
even though the user capture is done at a maximum of 30 fps.

Initially we had implemented the point cloud rendering method, background and virtual 3D 
model as legacy OpenGL calls by writing a function call for each vertex, color and normal 
element.  In this first iteration, however, we noticed that the rendering tended to be jerky and 
inconsistent (well below the 60 fps upper limit dictated by the ZSpace display).  As a result, we 
investigated and found that changing the rendering API to OpenGL 3.0 gave us access to 
function calls that allow us to designate chunks of CPU memory, specify the data structures for 
the vertices, normals and colors of the point cloud and 3D model to efficiently copy the point 
cloud and shared 3D model into GPU memory for drawing.  These calls were used extensively 
from the OpenGL 3.0 spec: glBufferData to copy CPU memory to GPU memory, 
glVertexPointer, glColorPointer, glNormalPointer to define the data structures and starting 
positions of the vertices, colors and normals, and glDrawArrays to issue the drawing command 
to the GPU pipeline.

With these changes, we were able to produce a consistent, fluid and realistic holovideo 
simulation experience.  The rendering on the ZSpace display was done with 1080p resolution at 
60, which felt very responsive to interaction, motion parallax reprojection whilst showing smooth 
animation of the remote user’s point cloud stream.
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1080p @ 60 fps 
Simulation Render

Capture Audio Input 3D model

Sampling 640 x 480 @ 
30 fps

Stereo, 44.1 KHz 
16-bit 

120 fps, 2 hands 20,000 
vertices

Compression ~8 Mb/sec 64 Kbit/sec N/A N/A

TABLE 6.3.1 - The above variables for input and output processing can be changed as 
options in Holosuite.  We were able to achieve the maximum 60 fps rendering with high-
quality video compression, audio compression, and complex 3D models, while 
maintaining smooth hand tracking responsiveness.



6.4 - Quantitative analysis: responsiveness and frame rate (holovideo) 

Using a diffraction-specific approach to generate the holographic image gives us some unique 
control over how the Mark IV holovideo display renders content.  In the Mark IV architecture, we 
are locked to 468 hololines (scan lines) in the vertical dimension, but we have some freedom in 
defining how a hololine appears to the viewer.  Namely, we can determine the viewing angle in 
the horizontal dimension for generating parallax, the granularity of the panoramagram (number 
of horizontal views in the view set used to compute the hologram) and the number of wafels per 
hololine, which gives the effective horizontal spatial resolution of the image.  

However, it is important to note that the architecture of the Mark IV is somewhat limiting in that 
there is a tradeoff between the viewing angle and horizontal resolution, meaning that the more 
wafels we generate per hololine, the narrower the viewing angle we can project and fewer 
wafels per hololine can project a wider viewing angle.
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Holovideo Rendering, 
K6000 GPU

Number of 
Views

Number of Wafels 
per Hololine

Number of 
Hololines

Viewing Angle

22 fps 16 600 468 30º Horizontal

12 fps 36 600 468 30º Horizontal

7 fps 64 600 468 30º Horizontal

TABLE 6.4.1 - Our implementation of diffraction-specific panoramagram computation for mark 
iv can perform real-time computation at 16 views, which is sufficient granularity for smooth 
motion parallax.

FIG 6.4.2 - The unpacked data from the diffraction-specific signal generated of a user’s 3D point 
cloud, this is a verification of the frequencies from depth and color components which 
contribute to the holographic image displayed on a Mark IV display.



Although the Mark IV allows us some flexibility over the horizontal spatial resolution, we chose 
to target a spatial resolution close to VGA (640x480) which would encompass the resolution of 
the captured 3D data, while giving a reasonable viewing angle of 30º in the horizontal 
dimension, enough for one user to experience motion parallax.

At 600 wafels per hololine with 16 views, we were able to achieve 22 fps rendering, close to the 
maximum rendering capability of the Mark IV holovideo display (30 fps).  This includes both 
stages of the holographic rendering process: creating the parallax view set for 16 views, and 
computing the hologram for each frame using a CUDA kernel.

6.5 - Qualitative analysis: user experience study and methodology 

In order to better understand the user experience of Holosuite, we performed a live user study 
(N = 17) of Holosuite running on the simulation renderer, using ZSpace displays.  The user 
study was performed with the investigator at one end of the session, connected to a Holosuite 
session being used by the subject, located in another location (different building) in the MIT 
campus.  See Appendix E for a figure detailing the configuration used for the user study. The 
investigator and participant were connected on different Wi-Fi access points, with a TCP 
connection formed via internet provided by MIT.  Participants were recruited via e-mail forum 
posts on MIT campus, word-of-mouth and through the social networking site, Tinder.

In the user study, we asked participants to fill out a questionnaire before performing the user 
study, and again after performing the study (see Appendix F and Appendix G for the 
questionnaires).  The nature of the study was to first gather some information about the 
participant’s familiarity with 3D display technology and video conferencing.  This was followed 
by a tutorial session that explained to the participant how to use the pinch-to-grasp action to 
manipulate the object and motion parallax to see around the 3D scenery. The user was then 
given a task to complete, while using Holosuite with the investigator as the remote user, in real 
time.  In a post-study questionnaire, we asked the participants to rate how realistic and how 
immersive their experience was, and asked participants to give some qualitative feedback on 
the interaction and impression of using Holosuite.
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FIG 6.5.1 - These two pictures show the scenario of the user study.  An investigator and a 
participant (2 users) using Holosuite holovideo simulation mode with Zspace displays, in 
separate locations over the internet.



The task we assigned to the participant was one that would require manipulation of the 3D 
object and usage of motion parallax to complete properly.   To create such a task, we formed a 
3D model of a building with openings on the sides of the building, allowing one to see through 
the building from one side, all the way to the opposite side.  Inside building model, we placed a 
colorized Stanford Bunny 3D model.  After giving the participant a brief introduction to the 
features of Holosuite, the investigator instructed the user to see if he or she could find an object 
inside the building and identify it.  If the user had trouble finding the bunny, the investigator 
would offer a suggestion to look for any openings in the building around the sides.

The initial orientation of the building was such that the participant was facing the front of the 
building, and there was no way to find the bunny inside the building without doing some 
manipulation and/or careful peering into the side of the building.  The expectation was that users 
would rely on motion parallax naturally to see the model of the bunny, which was partially 
occluded by the side of the building, to highlight the visual aesthetic of holographic rendering.  
Once the participant was able to find and identify the bunny, he or she was then asked whether 
he or she could see the front, or the back of the bunny.  After identifying the bunny, the 
participant was asked to show the investigator where the bunny is.

The task of finding and identifying the bunny was performed twice.  Once (Task A) with the user 
seeing a some visual feedback of their own point cloud (the point cloud and model from the 
perspective of the investigator), and again without any visual feedback of the self (Task B).
In Task A, the user was asked to point to where the bunny was, while looking at their own 
reflection.  The purpose of asking the users to look at their own reflection was to better 
understand whether this would be distracting to them. This was executed as a randomized 
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FIG 6.5.2 - Rendering of the virtual building model placed between the investigator and test 
subject in the user study.  Notice the openings of the building, there is a small Stanford Bunny 
model within the building, occluded by side of the building.  The two pictures show the bunny 
model from different angles of the same side of the building.  The user must rotate or look 
around the corners of the openings to fully see the bunny. 



control trial, where half the users performed Task A first, and the other half started with Task B 
first.

6.6 - Qualitative analysis: user experience study results 

The question of highest interest to us was whether participants considered using Holosuite to be 
a realistic and immersive experience.  Our results showed that participants, indeed, 
overwhelmingly reported being quite immersed in the experience and found it to be realistic.

When participants were asked to rate how realistic the experience of Holosuite was, 14 out of 
17 participants rated the experience as being realistic or highly realistic (~82% rated the 
experience as 4 or 5 out of 5), with none responding with a rating less than 3.

Similarly, on the question of how immersed participants found themselves with the experience of 
using Holosuite, 15 out of 17 participants rated the experience as being immersive or highly 
immersive (~88% giving at least a 4 out of 5), with none responding with a rating less than 3.  
Interestingly, the distribution of responses to this question was a bit different than the question of 
realism, showing that 6 people felt “highly immersed”, as opposed to just 2 people who felt it 
was “very realistic”.  This would suggest that the Holosuite experience could be considered 
somewhat realistic, and highly immersive.

All the participants were able to find the bunny object within the building and identify it.  Users 
were also asked how they were able to find the object inside the building, with 11 people (~65%) 
reporting that they used a combination of motion parallax and hand manipulation to rotate the 
building, while the remaining 5 people (~35%) reporting that they only rotated the building with 
their hands to find the object.
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How realistic would you rate the experience of 
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FIG 6.6.2 - Participant response on 
realism, after performing the study.
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FIG 6.6.1 - Participant response on 
immersion, after performing the study.



~52% of users (9 users) reported being distracted 
by seeing their 3D reflection on the screen, and 
~35% (6 people) reported that seeing themselves 
diminished the immersion or realism of the 
experience.  Although it is important to note that 
this figure is similar to the number of participants 
that found traditional videoconferencing visual 
feedback to be distracting (10 users, or ~58%).

From this data, we can assume that having visual 
feedback in the visual layout is, at best, a divisive 
feature for Holosuite, and can be detrimental to 
the experience for some.

When asked to write about their impressions on 
the experience and how it compares to traditional 
videoconferencing, user response was overall 
positive and encouraging about their experience.  
One user wrote:

“Even the simple functionality exhibited in the test cases were engaging and immersive. 
Being able to engage in a live conversation while manipulating an object felt very 
intuitive. The test case -- pointing out an object in a 3-d model to a colleague -- is 
impossible to imagine happening fluidly through screencasting or videoconferencing, 
especially in a collaborative "here, have the ball" kind of way that this system 
encourages.”

Another user wrote:

“Definitely much richer than normal video conferencing, and the ability to share a 
common object back and forth made it seem more like we're in the same space. 
Probably also the fact that we weren't seeing our backgrounds also created the 
impression that we were in some "other" in-between space, sort of like being on the 
telephone.”

When asked if the participants enjoyed the experience of using Holosuite, ~88% (15 people) 
responded with a 4 or 5 out of 5, with the other 2 people giving a rating of 3 (somewhat enjoyed 
the experience).  It is safe to conclude that the experience was quite enjoyable for a vast 
majority of the participants.

As for critical feedback, many participants reportedly had trouble using their hands to 
manipulate the virtual 3D object.  They reported difficulty in Holosuite being able to detect the 
grasp gestures, and intermittent quality of tracking issues.  Although the Leap motion algorithm 
is fairly advanced in its features, we observed that it has severe reliability issues, working well 
for some users’ hands, while even just detecting the presence of a hand can be difficult for other 
users.  We suspect that the discrepancy in hand size between subsequent users and the users’ 
lack of experience with the Leap motion could be the major contributors to the difficulty.

�57

How much did you enjoy the experience of 
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FIG 6.6.3 - Participant response on 
enjoyment, after performing the study.



Other participants were concerned about the visual aesthetic, as the noisy depth sensor data 
was reported to take away a little from the feeling of immersion.  This can be corrected in the 
future by implementing more advanced segmentation algorithms, that clean the edges of the 
users’ point cloud and fill missing holes.

Furthermore, some participants also noted that seeing their own image reduced immersion 
because it broke the metaphor of merging two 3D worlds together seamlessly.  One participant 
wrote:

“It took my attention away from the 3D object more toward myself.

For normal video collaboration (e.g. Skype), I do prefer to see video of myself because 
there's no sense of shared space in that interaction, so I need to make sure that I convey 
what I intend to the collaborator. For instance, I wouldn't want half my face to not be showing 
because my computer is pointed the wrong way. In this case, I preconsciously bought in to 
the virtual "physicality" so I didn't need the feedback, much like a constant feedback of how I 
look in "real life" would be super distracting. This shared space borrows enough from the 
real life feeling of space that my mental conception of how to convey intention in that space 
is retained.”

Another participant wrote:

“As opposed to a normal video conferencing system, I felt like this was a much more 
transparent interaction with the other user, so I sort of trusted the system more and 
assumed that the other user was just seeing my side of the screen. I didn't feel like I relied 
on the self-image as much as I do during a skype video call.”

The suggestion that having visual feedback of the local user would hinder the immersive 
experience for some, combined with the unenthusiastic feedback about this feature suggests 
that it can be removed with minimal negative impact to the overall experience. 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7. Conclusion
In this thesis document we have detailed the creation of an end-to-end 3D telepresence 
software program, written in C++11, that provides an interactive, realistic and immersive 
experience for two users to communicate, and collaborate over the internet.  Our application 
can compress and transmit 3D captured data of users at 30 fps over typical home broadband 
connections (9-17 Mbps full-duplex), allowing users to manipulate and share virtual 3D models 
in a life-like fashion with low latency (68 ms capture-to-render pipeline latency).  

Our application can decompress live 3D streams and render in real-time on advanced 3D 
displays (ZSpace) using OpenGL, providing smooth motion parallax at 120 fps (60 fps stereo), 
or at 22 fps on a full-color MIT/BYU Mark IV holographic video display using a diffraction-
specific holographic image computation algorithm at 600x468 spatial resolution using CUDA.

Qualitative analysis via a user study showed that participants rated the experience of our 
application as being both very realistic and highly immersive (82% and 88%, respectively) and 
very enjoyable (88%).

7.1 Future Work 

The development of Holosuite opens up avenues of further research for applications of 
holovideo display technology.  There may yet be other collaborative or productive usages for 
motion parallax that have not been highlighted here.  One of the differentiators of holovideo 
display technology is also the ability to provide accommodation, the usages for which were not 
explored at all in our application, but which could be a topic for future research.

As 3D capture techniques continue to improve, our application architecture is written to 
accommodate future sensors, which can easily be integrated into the software for capture and 
point cloud generation.  Multiple camera layouts and other novel methods of 3D capture could 
improve the visual aesthetic and increase the feeling of realism when using Holosuite.

Holosuite can benefit greatly from future depth compression techniques, as today the literature 
on depth and point cloud compression is scarce—perhaps future video compression standards 
may include profiles for lossy depth compression, reducing the bandwidth for communication.

7.2 Closing Remarks 

Our demonstration has shown, for the first time known to us, the implementation of real-time 
two-way interactive holographic telepresence. We hope that this body of work serves to educate 
and inspire the public in the way that the idea of holographic telepresence has done in the 
zeitgeist for the past few decades.  Our approach shows a usage which is possible on 
commodity hardware, made for researching consumer holovideo displays.  When such displays 
become available to the general public, we hope this thesis serves as a guide on how to 
implement usages, telepresence specifically, to take full advantage of the display technology. 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Appendix A - Local Session Architecture  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Local Holosuite session architectural model - Each gray block in the model is a thread of its own 
on the CPU. Using condition variables, the threads wait on data for processing/compressing.  
The merge block is responsible for combining the compressed streams into a packet.  The 
Network TCP TX block schedules the packets from the 3D scene, audio, local user’s hand input 
state and shared 3d model data (vertices and color information) as FIFO.
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Appendix B - Remote Session Architecture and 
Rendering (Simulation) 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Remote Holosuite session architectural model - Audio and 3D streams from the remote 
connection are parsed, and decompressed on the CPU. The point cloud is generated from color 
and depth stream, reprojected to perspective coordinates and the remote user’s image is 
rendered along with the 3D model and the state of the model, which is captured from the remote 
user’s hand.
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Appendix C - Remote Session Architecture and 
Rendering (Holovideo) 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Remote Holosuite session architectural model - Similar to Appendix B diagram, however instead 
of quad-buffered stereo OpenGL rendering, we generate a parallax views of the rendered scene 
(point cloud of the remote user and 3D model) and compute the holographic fringe pattern in 
CUDA or OpenCL for output to a holographic video display.
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Appendix D - Software Libraries  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Version Purpose

assimp 3.1.1 3D Model importing

Boost 1.55.0 Standard TCP networking, serialization, etc.

FFMPEG 20140626 H.264 compression

FreeGLUT 1.2.8 OpenGL window initialization

GLM 0.9.6.1 Computer graphics math for computing matrices

LeapSDK 2.2.4.26750 Hand tracking

Log4Cxx 0.10.0 Logging

OpenCV 2.4.8 Image processing and compression

OpenGL 3.1 3D rendering

OpenNI 2.2.0.33 Depth camera input

Opus 1.1 Audio codec

Point Cloud Library 1.4.7 Point cloud codec, point cloud generation

Portaudio r1891 Audio input and output

ZSpace SDK 3.0.0.318 ZSpace display rendering



Appendix E - Holovideo Simulation Setup  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Appendix F - Pre-User Study Questionnaire
1. Have you ever used video conferencing software such as Skype or FaceTime?

• Yes/No  

2. If so, how often do you use video conferencing to communicate with others?
• Daily
• Weekly
• Monthly
• Rarely

3. For which usages do you partake in video conferencing? 
• Meetings
• Collaboration
• Education (Teaching/Learning)
• Talking with friends and family
• Interviews
• Other:

4. When video conferencing with others, how important is it for you to be able to see 
visual feedback of yourself on the display? 

• Crucial to the experience
• Very important
• Somewhat important
• Not at all important 

5. If so, why is it important to see yourself?  

6. When video conferencing with others, how distracting is it to see visual feedback of 
yourself on the display? 

• Extremely distracting
• Very distracting
• Somewhat distracting
• Not at all distracting

7. Do you ever use online collaboration tools, such as Google Apps (Google Docs, 
Slides, Forms, etc.), to work with others simultaneously? 
Any hardware/software that allows you to communicate with others while doing work 
together.

• Often
• Sometimes
• Not often/rarely
• Never

8. If so, which online collaboration tools do you use? 
• Google Apps (Google Docs, Slides, Forms, etc.)
• Microsoft 365
• Slack
• Trello
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• Other:

9. Have you ever experienced digital 3D display technology? 
This includes active and passive digital 3D display solutions, such as RealD (digital 
3D films at the cinema) or modern 3D HD televisions

• Yes/No

10. If so, which 3D software/technology have you used or consumed in the past?
• RealD (3D films at the cinema)
• Glasses-based Digital 3D TV (Active/Passive stereo glasses consumer TVs)
• Glasses-free 3D displays (such as Nintendo 3Ds, light-field displays and some TVs)
• ZSpace/Head-tracked motion parallax displays
• Holographic (diffraction-based) displays
• Other:

11. How much do you enjoy watching entertainment in digital 3D format? 
• Very much
• It's enjoyable
• Somewhat enjoy it
• Do not enjoy at all
• I avoid it

12. Are you prone to discomfort when viewing 3D display technology?  
This typically includes motion sickness, nausea, headaches, dizziness and related 
symptoms.

• Yes/No

13. Have you ever used advanced 3D display technology that simulates motion parallax?  
This includes displays that track the location of the user's head to reproject 3D 
scenery, multi-view stereo or light-field displays

• Yes/No

14. Do you ever use 3D CAD tools? 
This includes software such as Sketch-up, Blender, Rhinoceros, SolidWorks, etc.

• Often
• Sometimes
• Not often/rarely
• Never

15. How familiar are you with gesture-based interaction technology?
• Advanced
• Experienced
• Novice
• Somewhat familiar
• Not at all familiar

16. If so, which technologies have you used in the past?  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17. This includes any technologies that enable user interface control by hand/body 
movement and gestures

• Kinect (XBOX One/XBOX 360)
• Kinect (PC)
• OpenNI/NITE
• Leap Motion controller
• Nintendo Wii
• Face tracking
• Other: 

18. When using gesture-based interaction technology, how important is it for you to see 
visual feedback of your hand/body state? 

• Crucial to the experience
• Very important
• Somewhat important
• Not at all important 

19. Have you ever used gesture-based interaction in conjunction with 3D display 
technology?

• Yes/No

20. What is your experience and impression of 3D display technology? 
Please write about your pre-conceptions, the good and bad experiences, and why 
they were good/bad 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Appendix G - Post-User Study Questionnaire
1. How realistic would you rate the experience of using Holosuite?

• Not at all - Highly Realistic (1-5)

2. How immersed were you in the experience of using Holosuite?
• Not at all - Very much (1-5)

3. Do you feel that Holosuite exhibits a desirable usage for remote collaboration?
• Yes/No

4. Based on your previous answer, explain why you think it is or isn't desirable

5. What sorts of usages for yourself can you envision in Holosuite?

6. Did you find it distracting to see your own image while collaborating with the other 
user?

• Yes/No

7. Did you find that seeing yourself diminished the realism or the feeling of being 
immersed in the telepresence experience?

• Yes/No

8. Explain the things you did or did not like about having 3D visual feedback of yourself

9. Were you able to find and see the object inside the building?
• Yes/No

10. What method did you use to find the object in the building?
• Mostly by moving my head and looking around and through the structure of the building
• Mostly by rotating the building with my hand
• Both by looking around the object and rotating the object with my hand

11. How much did you enjoy the experience of using Holosuite?
• Not at all - Very much (1-5)

12. How do you compare using Holosuite to your previous experience with using 3D 
display technology?

13. How do you compare using Holosuite with your previous experience in online 
collaborative environments?

14. How do you compare using Holosuite with your previous experience with video 
conferencing?

15. How would you improve the experience of Holosuite?
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